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Abstract

This paper introduces the concept of black holes in NUVO theory, reinterpreting
gravitational collapse not as the formation of a curvature singularity, but as a phase
boundary where sinertia—the space-coupling capacity of mass—collapses to zero. In-
side the resulting kenos region, scalar modulation ceases, pinertia vanishes, and matter
transitions into a kinetic condensate propagating at the speed of light. We compare this
framework with general relativity, analyze the dynamics of collapse under the scalar
field λ(t, r, v), and explore implications for event horizon structure, entropy scaling,
and the fate of information in gravitationally bound systems.

1 Introduction

Black holes in general relativity are defined as regions of extreme spacetime curvature
bounded by an event horizon, beyond which escape is classically impossible [1]. At their
core lies a singularity where the curvature of spacetime diverges and the theory breaks
down. While this framework has led to profound predictions — including gravitational wave
emission, Hawking radiation, and the no-hair theorem — it also gives rise to unresolved
paradoxes concerning information loss, entropy, and quantum coherence.

NUVO theory offers a fundamentally different framework in which all gravitational phe-
nomena arise not from curved spacetime, but from a conformal scalar field λ(t, r, v) that
modulates local measurements of space and time. This scalar is determined by a particle’s
velocity and position relative to gravitational sources[2]:

λ(t, r, v) =
1√

1− v2

c2

+
GM

rc2
.

Within NUVO, inertial structure is separated into two distinct components:
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• Pinertia (ιp): Governs modulation due to velocity, representing how a particle couples
to geometry through motion.

• Sinertia (ιs): Governs modulation due to gravitational potential, representing how a
particle extracts structural coherence from space.

This decomposition enables NUVO to interpret gravitational collapse not as a diver-
gence of curvature, but as a phase transition in modulation capacity. As mass concentrates,
sinertia can vanish — cutting off a particle’s ability to interact with or be modulated by
surrounding space. When this occurs, pinertia also collapses, and particles transition into a
null-modulation state where motion is pure kinetic and geometry becomes inert.

We define this modulation-collapse region as the kenos — a flux-null vacuum in which
mass is present but space is no longer structurally interactive. In this model, a NUVO black
hole forms not when escape velocity exceeds the speed of light, but when space itself can no
longer support geometric propagation. The resulting black hole is not a singularity but a
condensate of non-modulating mass-energy confined by scalar boundary conditions.

This paper introduces the geometry, field structure, and physical implications of NUVO
black holes. We derive the condition for scalar collapse and show that it coincides numerically
with the Schwarzschild radius. We explore the behavior of proper time, geodesics, and
modulation capacity across this boundary and discuss implications for information, entropy,
and field coherence. The result is a novel model of gravitational collapse consistent with all
known observational tests but devoid of singularities or metric divergence.

2 Scalar Modulation and Inertial Structure

In NUVO theory, gravitational and relativistic effects are not consequences of curved space-
time but instead arise from the scalar field λ(t, r, v), which modulates local geometry while
preserving global flatness. The scalar field is defined as:

λ(t, r, v) =
1√

1− v2

c2

+
GM

rc2
. (1)

This conformal factor applies uniformly to all components of the Minkowski metric via:

gµν(t, r, v) = λ2(t, r, v) ηµν , (2)

where ηµν is the flat Minkowski metric.
To interpret λ physically, we decompose it into two distinct components:

ιp(v) =
1√

1− v2

c2

, (3)

ιs(r) =
GM

rc2
, (4)

such that:
λ = ιp + ιs. (5)

We define:
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• Pinertia (ιp): The inertial modulation of a particle due to its velocity. It represents
how a particle’s motion through space modifies its local measurement of time and
distance.

• Sinertia (ιs): The scalar modulation associated with gravitational potential. It repre-
sents the extent to which a particle draws from spatial structure in order to maintain
its existence as a coherent, geometrically embedded object.

In this framework, a particle’s total geometric modulation is the sum of these two con-
tributions. A high-velocity particle has strong pinertial effects. A particle deep in a gravita-
tional well experiences enhanced sinertial modulation.

Both components are essential to sustaining geometric propagation: pinertia enables
time-like evolution, while sinertia enables space-like coherence. When either is removed, the
capacity for modulation fails — leading to either complete decoupling from space (photon-
like behavior) or collapse into the kenos (null-modulation vacuum).

We interpret this framework as an energy-based encoding of geometry. Rather than
space being curved by mass-energy, space responds through the modulation field λ, which
expresses geometry as a dimensionless, energy-normalized quantity. In this sense, the NUVO
model unifies kinematic and gravitational phenomena through scalar modulation rather than
metric deformation.

3 Defining Sinertia Collapse

In the NUVO framework, the modulation of geometry by the scalar field λ depends on two
distinct components: pinertia and sinertia. Whereas pinertia encodes a particle’s kinetic
modulation due to its velocity, sinertia describes the particle’s ability to draw geometric
coherence from the surrounding space.

Sinertia is defined as:

ιs(r) =
GM

rc2
. (6)

It is a purely position-dependent term that reflects how deeply embedded a particle is in
a gravitational well. Unlike pinertia, which can be altered by motion, sinertia is governed
solely by the geometric relationship between the particle and the mass distribution around
it.

We define sinertia collapse as the condition under which ιs → 0 and the modulation
capacity of space vanishes. In this regime:

• The scalar field λ no longer changes with position: ∇λ = 0.

• The space around the particle becomes inert — unable to support modulation.

• Propagation, structure, and forces cease to operate; geometry becomes static and de-
coupled.

This regime marks the onset of the kenos, a region where space exists but no longer
modulates. Unlike a singularity, where physical quantities diverge, the kenos represents

3



a scalar limit where all gradients vanish. It is a vacuum not of energy, but of geometric
response.

The physical interpretation is as follows:

• Outside the kenos: sinertia is positive, λ varies, and space can mediate structure.

• At the boundary: ∇λ = 0, the modulation field stalls.

• Inside the kenos: sinertia is zero, and pinertia becomes ineffective; the particle cannot
sustain interaction with geometry.

In this picture, collapse occurs not through curvature, but through the exhaustion of
geometry’s capacity to respond. Just as a photon has no pinertia and moves at c, a particle
inside the kenos has no sinertia and collapses to a state of pure kinetic motion. Motion is
still possible, but modulation is not — and thus, the particle becomes trapped in a flux-null
phase of flat but inert geometry.

This defines a fundamentally different conception of a black hole. In NUVO, black holes
are not singularities in spacetime curvature but boundaries in scalar modulation, separating
the coherent, modulatable universe from the inert kenos phase.

4 NUVO Black Hole Boundary

The NUVO model replaces the concept of a general relativistic event horizon with a scalar
modulation boundary — a radius at which the ability of space to propagate structure through
λ vanishes. This modulation limit is not defined by escape velocity, but by a condition on
inertial structure: specifically, the point at which a falling particle reaches the speed of light
and pinertia diverges.

In NUVO, the scalar field is given by:

λ(r, v) =
1√

1− v2

c2

+
GM

rc2
= ιp + ιs. (7)

We define the boundary of a NUVO black hole as the surface at which a test particle in free
fall reaches v = c, causing γ → ∞ and thus λ → ∞. This is not a geometric singularity, but
a breakdown in modulation capacity — a point at which scalar gradients cease and the field
becomes non-responsive.

To find this critical radius, we apply Newtonian energy conservation for a particle falling
from rest at infinity:

1

2
v2 =

GM

r
. (8)

Solving for the radius where v = c gives:

c2 =
2GM

rh
, (9)

and thus:

rh =
2GM

c2
. (10)
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This is formally identical to the Schwarzschild radius in general relativity, but its inter-
pretation is fundamentally different. In NUVO, rh marks the point beyond which the scalar
field cannot modulate. Both sinertia and pinertia fail to support structure. No curvature
occurs, and no physical quantity diverges — but the particle becomes embedded in a fluxless,
modulation-null vacuum.

Beyond rh, space continues to exist but cannot respond. The geometry is flat, but
inert. Particles trapped within this region behave as if massless, confined to v = c, unable
to interact with the external field. This defines the kenos: the modulation vacuum that
replaces the GR black hole singularity.

This reinterpretation provides a consistent, singularity-free model of collapse. It preserves
the gravitational radius as a meaningful boundary but removes the need for spacetime cur-
vature and infinite compression. Instead, the collapse is one of modulation capacity — a
scalar exhaustion, not a geometric divergence.

5 Interior Dynamics and Condensate Behavior

Within the NUVO black hole boundary — the kenos — space no longer supports scalar
modulation. The scalar field λ becomes uniform and inert:

∇λ = 0, λ → ∞. (11)

This does not imply a divergence of curvature or the breakdown of physical laws, but rather
the cessation of interaction. The particle cannot couple to surrounding geometry, because
both pinertia and sinertia have failed.

We interpret this state as a form of condensate: a configuration in which mass exists,
but can no longer structure space. The particle moves with v = c, not because it is massless,
but because no spatial feedback is available to slow or modulate its motion. This mirrors
the behavior of photons, which also lack pinertia and move at the speed of light. However,
while photons remain coupled to space via sinertia (they follow null geodesics), particles in
the kenos are fully decoupled — embedded in a modulation-dead region.

The interior of a NUVO black hole is thus not a singularity, but a scalar condensate. All
particles are confined to a null-modulation state:

ιp = γ → ∞, ιs → 0, λ = constant, ∇λ = 0. (12)

In this regime:

• There are no forces — force requires a gradient in modulation.

• There is no structure — sinertia is zero, and space has no coherence.

• There is no information flow — propagation requires a varying field.

• All motion is kinetic — constrained to v = c, without resistance or reference.
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This behavior resembles a Bose–Einstein condensate in its most abstract form [3]. Just
as bosons collapse into a single coherent quantum state at low temperature, mass collapses
into a fluxless, coherent geometric null-state in the kenos. The difference is that, in NUVO,
this condensation occurs not in a quantum field, but in a modulation field. Geometry does
not collapse — it simply ceases to respond.

This presents a new conception of gravitational interiors. No singularity forms. No in-
finite energy densities are required. The NUVO black hole is a final state in the scalar
modulation structure of space — an inert geometry filled with kinetically confined but spa-
tially non-coupling matter. This replaces the singularity with a field-theoretic condensate
— mathematically finite, physically consistent, and observationally plausible.

6 Comparison to GR Black Holes

The NUVO black hole framework reproduces the empirical boundary condition of general
relativity — the Schwarzschild radius — but does so using a fundamentally different mech-
anism [4]. In GR, black holes form through the curvature of spacetime driven by Einstein’s
field equations. The event horizon marks a lightlike boundary beyond which causal contact
is lost, and the interior contains a curvature singularity where spacetime and classical physics
break down.

By contrast, NUVO black holes arise from the scalar modulation field λ(t, r, v), which
governs how geometry responds to mass and motion. Collapse occurs not when curvature
diverges, but when modulation vanishes. The event horizon is defined not by escape velocity,
but by the boundary at which sinertia collapses and pinertia becomes unbounded. There is no
divergence in geometry — only a transition into a region where geometry cannot modulate.

The following table summarizes the key differences:

Feature GR Black Hole NUVO Black Hole

Horizon definition r = 2GM/c2 (escape velocity = c) r = 2GM/c2 (modulation collapse)

Interior state Curved spacetime, singularity at
center

Flat, non-modulating scalar
condensate

Field breakdown Divergence in curvature tensors Inactivation of ∇λ

Causal isolation Light cones tilt inward Scalar gradients vanish

Matter state Infinite compression, pointlike core Null modulation, kinetic condensate

Information loss Paradoxical Prevented by boundary modulation

Time behavior Freezes at horizon (from outside) Pinertia diverges at horizon

Geometry behavior Curved, singular Flat, inert

Table 1: Comparison of general relativistic and NUVO black holes.

This reinterpreted framework avoids many of the unresolved issues in GR. There is no
need for singularities, divergent tensors, or quantum gravity corrections to handle collapse.
Instead, NUVO predicts a physically consistent, flat-space endpoint to gravitational collapse
— a kenos bounded by scalar inactivation, not geometric pathology.
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Because the Schwarzschild radius emerges naturally from energy conservation in this
model, the observational predictions of GR — such as orbital precession, gravitational lens-
ing, and gravitational wave ringdown — remain matched. However, NUVO differs sharply
in its description of what lies inside: not infinite curvature, but inert modulation.

This opens new conceptual avenues for understanding entropy, information preservation,
and field structure in the strongest gravitational regimes.

7 Conceptual Implications

The reinterpretation of black holes as scalar modulation collapse boundaries rather than
spacetime singularities opens new possibilities for addressing longstanding puzzles in gravi-
tational physics and quantum information theory.

7.1 Information and Modulation Gradients

In GR, the fate of information falling into a black hole remains an unresolved paradox. Be-
cause the interior geometry includes a singularity and classical causal structures, it is unclear
how — or whether — information is preserved. In NUVO, the situation is fundamentally
different. Because the interior of a NUVO black hole is a fluxless, non-modulating region,
information is not destroyed — it is simply trapped at a modulation boundary.

Escape becomes impossible not due to infinite curvature, but due to the vanishing of
scalar gradients. Information is localized at the surface where ∇λ → 0. If modulation ever
resumes (for example, through external influence or decay of the boundary), information
may become accessible again. This provides a pathway to resolving the information paradox
without resorting to holography or exotic field theories.

7.2 Entropy and the Modulation Surface

In general relativity, black hole entropy is proportional to horizon area. In NUVO, this pro-
portionality emerges from a different mechanism. Because λ controls geometric modulation,
the outer boundary of a black hole — where ∇λ becomes steep but finite — contains the
entire field gradient. All modulation occurs at or near this boundary, while the interior is
inert.

We therefore propose that entropy in NUVO black holes corresponds to the scalar mod-
ulation content of the boundary layer. This could be proportional to:

S ∝
∫
∂V

|∇λ|2 dA, (13)

where ∂V is the surface of the kenos. This aligns conceptually with the area-scaling of
entropy, while replacing metric curvature with scalar field variation as the carrier of structure.

7.3 Modulation-Based Holography

In GR-based holography, all information inside a black hole is encoded on its horizon surface.
NUVO provides a natural scalar-field analog. Because the modulation gradient ∇λ vanishes
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in the interior, all observable geometry, force, and interaction must occur in the narrow shell
where λ still varies.

This naturally gives rise to a form of holography in which the modulation boundary
encodes the full dynamical state of the system. Unlike GR, this does not require curved
spacetime or dual field theories — the behavior emerges directly from the scalar structure.

7.4 Quantum Field Compatibility

Because the NUVO model avoids infinite curvature and retains flat spacetime, it may be
inherently more compatible with quantum field theory [5]. The background geometry remains
Minkowski everywhere; only the scalar modulation varies. This allows the use of standard
quantization techniques and suggests a path toward integrating gravitational collapse with
quantum behavior without requiring quantum gravity or renormalization of singularities.

NUVO black holes may therefore serve as a bridge between flat-space quantum physics
and gravitation — providing a coherent geometric substrate on which both can operate.

8 Conclusion

NUVO theory reinterprets gravitational collapse not as a geometric singularity, but as a
breakdown in the scalar modulation capacity of space. In this framework, black holes form
when sinertia — the component of inertial structure derived from gravitational potential
— vanishes, and pinertia — the velocity-dependent component — diverges. This condition
defines a critical boundary, identical in form to the Schwarzschild radius, but physically
reimagined as a modulation horizon rather than a spacetime trap.

Within this boundary, the scalar field λ becomes constant and structureless. Gradients
vanish, and space ceases to modulate. The resulting region — the kenos — is a flux-null
vacuum, where matter persists but cannot interact with or be influenced by external geom-
etry. Particles inside the kenos move at the speed of light, not because they are massless,
but because the geometry has lost the capacity to slow them.

This model preserves all empirical predictions of general relativity at the horizon scale
while avoiding singularities, divergences, and the breakdown of classical geometry. It offers
a new picture of black holes as modulation-bound condensates, consistent with flat-space
dynamics and compatible with quantum field theory.

By separating inertial structure into pinertia and sinertia, NUVO opens a new geometric
framework for understanding motion, structure, and collapse. It resolves the endpoint of
gravitational compression without invoking curvature or exotic matter, instead relying on
the scalar exhaustion of geometry’s capacity to respond.

This new interpretation repositions black holes not as holes in space, but as boundaries
in field structure — and with it, NUVO establishes a gravitational theory that preserves
coherence, avoids divergence, and reframes the most extreme objects in the universe in
terms of scalar modulation.
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Appendix A: Flux Capacitor Formalism

The concept of a “flux capacitor” in NUVO theory is a metaphorical representation of the
mechanism by which matter extracts geometric coherence from the scalar field λ(t, r, v).
In conventional physics, mass passively responds to spacetime curvature. In NUVO, mass
actively couples to scalar gradients to maintain structured existence — a coupling we describe
via modulation channels.

A.1 Conceptual Basis

Each massive particle is assumed to be equipped with one or more “flux capacitors” —
abstract mechanisms that regulate how energy is extracted from space through modulation.
These capacitors draw from both:

• Pinertial flow: The velocity-based component (ιp), which governs time-like modula-
tion,

• Sinertial flow: The potential-based component (ιs), which governs space-like struc-
ture and coherence.

When scalar gradients exist (∇λ ̸= 0), the flux capacitors remain active. When scalar
gradients vanish, these capacitors can no longer draw modulation from space. The particle
effectively becomes uncoupled from the geometric substrate.

A.2 Operational Criteria

Define a flux capacitor response function F :

F = |∇λ(t, r, v)|2 , (14)

which serves as the capacity of a particle to interact with geometry. When F > 0, modulation
is active and forces can operate. When F → 0, the flux channel collapses:

F = 0 ⇒ modulation failure.

A.3 Threshold Interpretation

We postulate that each particle has a minimum flux threshold Fmin:

F < Fmin ⇒ modulation quench.

This defines the physical onset of sinertia collapse and signals entry into the kenos. The flux
capacitor formalism thus allows us to interpret inertial coupling as a field-dependent process
and supports a physically intuitive explanation for black hole boundary dynamics.
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A.4 Visualization

Conceptually, the flux capacitor can be visualized as a scalar gradient channel — a pipeline
connecting the particle to external modulation bandwidth. Once this pipe narrows to zero
(or coherence bandwidth vanishes), interaction ends. This provides a visual metaphor for
why no force, field, or structure can operate in the kenos, even though space itself remains
present and flat.
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Appendix B: Geodesic and Proper Time Behavior at the

Kenos Boundary

To understand particle behavior as it approaches a NUVO black hole, we examine how
geodesics and proper time evolve in the limit where the scalar field λ diverges and its gradient
vanishes.

B.1 Geodesic Evolution with Scalar Modulation

In NUVO, geodesics are determined from the conformally modulated flat-space metric:

gµν(t, r, v) = λ2(t, r, v) ηµν , (15)

with the scalar field:

λ(t, r, v) =
1√

1− v2

c2

+
GM

rc2
.

The Christoffel symbols in a conformally flat metric are:

Γµ
αβ =

1

λ

(
δµα∂βλ+ δµβ∂αλ− ηµνηαβ∂νλ

)
. (16)

Near the kenos boundary, we have:

∇λ → 0, λ → ∞.

This causes the Christoffel symbols to vanish:

Γµ
αβ → 0,

which implies:
d2xµ

dτ 2
= 0. (17)

In other words, motion becomes force-free not because curvature is absent, but because
modulation fails. The particle’s trajectory becomes inertial in flat geometry — but without
external modulation, its internal state becomes fixed.

B.2 Proper Time Behavior Near the Kenos

The relation between proper time and coordinate time in NUVO is given by:

dτ =
dt

λ(t, r, v)
. (18)

As λ → ∞ near the kenos boundary, this implies:

dτ → 0.

From the perspective of an external observer, clocks falling toward the kenos appear to freeze.
However, unlike in GR, this is not due to infinite time dilation from curvature. It is due to
scalar field saturation — a breakdown of modulation bandwidth.
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B.3 Trapped Kinetic Limit

Inside the kenos, all motion becomes null:

v → c, γ → ∞, λ = const, ∇λ = 0.

Proper time no longer accrues:
dτ

dt
=

1

λ
→ 0.

The particle is trapped in a purely kinetic, modulation-null state. It moves at the speed of
light, but is causally disconnected from structured space. This provides a rigorous mathe-
matical basis for the observational freezing and scalar collapse described in the main text.
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Appendix C: Energy Conditions and Stability Bounds

in NUVO Collapse

In classical general relativity, energy conditions such as the weak and dominant energy
conditions place constraints on physically reasonable forms of matter and spacetime. In
NUVO, where gravitational dynamics emerge from scalar modulation rather than curvature,
analogous conditions must be reformulated in terms of the scalar field λ and its gradients.

C.1 Modulation-Energy Interpretation

We interpret energy in NUVO as a function of the ability to maintain scalar modulation:

Emod = f(λ,∇λ), (19)

where energy density is no longer defined by stress-energy tensors but by the dynamic ca-
pacity of λ to sustain proper time and spatial coherence.

Modulation energy vanishes in the kenos:

Emod → 0 as ∇λ → 0.

C.2 NUVO Stability Bound

We define a scalar stability condition to ensure that modulation remains physically viable:

|∇λ|2 > ϵcrit, (20)

where ϵcrit is the minimal gradient necessary to maintain coherent structure. If the scalar
field gradient falls below this bound, modulation cannot sustain interaction, and the region
transitions toward sinertia collapse.

C.3 Boundary Surface Energy Density

At the modulation boundary (kenos surface), all scalar gradients are concentrated. We define
an effective surface energy density as:

σ =
1

4π
|∇λ|r=rh

. (21)

This quantity governs the flux of scalar energy into the boundary and may provide a geo-
metric basis for entropy area scaling in the NUVO framework.

C.4 Global Energy Conservation in Collapse

Because NUVO operates in globally flat space, total scalar modulation capacity must be
conserved. As scalar gradients are extinguished in the kenos, they must accumulate elsewhere
— typically in the surrounding boundary shell. This ensures a conservation law of the form:∫

V

Emod d
3x+

∫
∂V

σ dA = const. (22)
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This provides a basis for understanding gravitational collapse in NUVO not as a loss of
structure, but as a redistribution of modulation gradients — a scalar field–based reinterpre-
tation of classical energy conservation in gravitating systems.
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Appendix D: Comparison of Black Hole Theories
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Theory Event Horizon Singularity-Free Flat Geometry Derived rh Scalar-Based QFT Compatible Remarks

General Relativity (GR) Yes No No Yes (Einstein Eq.) No Partial (divergent) Classical singularity
model with curved
spacetime

Loop Quantum Gravity Yes Yes (via quantization) No Not directly No Intended Quantized spacetime;
not yet fully predictive

String Theory / Fuzzballs Yes Yes (nonlocal cores) No Emergent from duality No Yes Requires extra dimen-
sions and dual holo-
graphic constructions

Einstein–Cartan Theory Yes Yes (torsion prevents collapse) No Similar to GR No Partial Adds torsion to Einstein
equations to avoid singu-
larity

Verlinde’s Emergent Gravity No (reinterpreted) Yes Yes Not derived Yes (entropic) Partial Gravity arises from
entropic forces, applied
mainly to galaxy scale

Conformal Gravity (Mannheim) Yes Claimed No (higher-order tensors) Modeled No Yes Based on Weyl symmetry
and 4th-order field equa-
tions

NUVO Theory (This Work) Yes Yes (kenos) Yes (modulated flat) Yes (from v = c) Yes (single scalar) Yes (Minkowski) Black holes as scalar
modulation collapse
regions; no curva-
ture, no singularity,
observationally indis-
tinguishable from GR
outside the kenos

Table 2: Landscape comparison of black hole models across major gravitational theories. NUVO is the only known model to
derive the black hole radius from first principles in flat space using a scalar field, while avoiding singularities and remaining
compatible with quantum field theory.16
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