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We develop the differential geometric structure of scalar fields on NUVO space, a

conformally modulated manifold endowed with a unit-constrained frame bundle1. A

smooth scalar field λ(x) scales the base metric via gµν(x) = λ2(x)ηµν , where the

unit constraint enforces invariant norm on tangent vectors with respect to the back-

ground geometry. We introduce scalar arc integrals and derive geodesic equations

intrinsic to this scalar-conformal structure. A novel concept, sinertia, is defined as

the geometric resistance arising from the non-affine transport of scalar flow vectors

jµ = λ2uµ. We analyze global coherence domains, scalar holonomy, and the bundle

topology associated with λ(x) as a section of a positive line bundle. The framework

constructed here is purely geometric and variationally agnostic, yet it provides the

necessary mathematical foundation for subsequent physically motivated models in

scalar quantization, orbital coherence, and relativistic redshift. This work serves as

the base layer for future dynamical formulations in the NUVO theory series.
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I. INTRODUCTION

This paper develops the scalar field geometry underlying NUVO space and establishes how

gravitational phenomena arise from scalar-modulated inertial flow—here termed sinertia. In

contrast to the traditional interpretation of gravity as spacetime curvature, we propose that

geometry alone defines the scalar medium, while observable gravitational effects emerge from

the inward flow of scalar-inertial energy through that geometry.

We begin by formulating the scalar field as a smooth section over a unit-constrained frame

bundle, introducing the logarithmic modulation field ϕ = lnλ(x) as the central dynamical

variable. This scalar field governs the relative contraction of space and time across frames,

but it does not directly cause acceleration. Instead, we show that the gradient and divergence

of sinertia flow—defined as the scalar-modulated inertial current Jµ = λρuµ—is what drives

motion, binding, and quantization.

The resulting picture treats gravity not as a force or curvature, but as a kinematic con-

sequence of the geometry-driven inward flow of scalar energy. This allows us to formulate

a Gauss-like law for gravity, derive gravitational acceleration from sinertia flux, and recover

quantized coherence conditions as emergent phenomena from arc-closure constraints.

The structure of the paper is as follows. Section II constructs scalar fields on a unit-

constrained frame bundle. Section III introduces the differentiable and topological proper-

ties of these fields. Section IV develops the conformal geodesics and scalar arc integrals that

define motion. Section V presents the core result: sinertia flow acts as the physical mech-

anism behind gravitational acceleration. Section VI explores global properties and scalar

coherence boundaries. The paper concludes with remarks on how this framework generalizes

classical gravitational theory and sets the stage for quantum coherence in scalar geometry.

II. SCALAR FIELDS AND UNIT-CONSTRAINED FRAMES

Let M be a smooth, n-dimensional manifold equipped with a base metric ηµν , taken to

be Minkowski or Euclidean depending on context. A scalar field on M is a smooth positive

function λ : M → R+. The scalar field defines a conformal modulation of the base metric

via

gµν(x) = λ2(x) ηµν .
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We refer to (M, gµν) as a NUVO space when the frame structure is further constrained by

a unit condition.

Let {eµ} denote a local frame on TM and {eµ} its dual coframe. The NUVO framework

imposes a unit constraint on these frame vectors:

∥eµ∥g = λ(x),

which is equivalent to demanding that each frame vector has norm 1 with respect to the

unscaled metric ηµν :

∥eµ∥η = 1.

This condition ensures that the scalar field λ(x) acts as a conformal scaling factor for both

the metric and the physical units carried by the frame.

We may interpret λ(x) as encoding the local stretching or contraction of space and time,

such that observers using unit-constrained frames perceive lengths and durations in accor-

dance with the local value of the scalar field.

Importantly, the conformal metric gµν defines geodesics, proper times, and causal struc-

ture, while the unit-constrained frame enforces a fixed measurement scale within each tan-

gent space. This dual structure enables the scalar field to govern both the geometric evolu-

tion of space and the physical interpretation of measurements made within it.

III. DIFFERENTIABILITY AND BUNDLE STRUCTURE

Let M be a smooth n-dimensional manifold. The scalar field λ : M → R+ is assumed

to be a smooth function, λ ∈ C∞(M), and strictly positive at every point. This regularity

ensures that conformal scaling via λ2(x) preserves the smooth structure of the manifold and

that the metric gµν(x) = λ2(x)ηµν remains smooth and non-degenerate.

The frame bundle over M , denoted F(M), consists of all ordered bases (frames) of the

tangent spaces TxM at each point x ∈ M . In NUVO geometry, we consider a scalar-

constrained subbundle Fλ(M) ⊂ F(M), whose sections consist of frames {eµ} satisfying the

unit constraint:

∥eµ∥η = 1 for all µ.

This implies that at each point x ∈ M , the frame is orthonormal with respect to the base

metric ηµν , and the scalar field acts as a conformal factor that lifts these frames into a curved
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(modulated) geometry.

The fiber over each point x ∈ M is thus a space of orthonormal frames constrained by

the scalar field. The collection of these fibers forms the unit-constrained frame bundle1, and

the scalar field λ(x) may be viewed as a smooth section of a positive real-valued line bundle

over M :

λ ∈ Γ(L+),

where L+ denotes the bundle of positive scalar weights acting on the conformal scaling of

frames.

This scalar-conformal frame bundle structure allows us to define derivatives, flows, and

geodesics in a way that is consistent with both the smooth geometry of the manifold and

the local scaling imposed by λ(x). In particular, the connection on this bundle will play a

role in defining scalar arc integrals and sinertia in subsequent sections.

IV. SCALAR ARC INTEGRALS AND CONFORMAL GEODESICS

In NUVO space, physical distances and elapsed times are defined with respect to the

conformally scaled metric

gµν(x) = λ2(x) ηµν .

Accordingly, the scalar field λ(x) modulates the arc length of curves in the manifold. Given

a smooth curve γ : [a, b] → M parameterized by s, the scalar-modulated arc length is given

by:

∆s =

∫ b

a

√
gµν(γ(s)) γ̇µ(s)γ̇ν(s) ds =

∫ b

a

λ(γ(s))
√
ηµν γ̇µ(s)γ̇ν(s) ds.

This expression defines proper distance (or proper time, depending on the signature of ηµν)

as measured by observers constrained to unit frames.

Geodesics in this conformally modulated geometry minimize the scalar arc integral. The

corresponding geodesic equation is obtained by extremizing the action

S[γ] =
∫

λ(γ(s))
√
ηµν γ̇µ(s)γ̇ν(s) ds.

Using the Euler–Lagrange formalism, we obtain the conformal geodesic equation2 in local

coordinates:

d2xρ

ds2
+
(
δρµ ∂ν lnλ+ δρν ∂µ lnλ− ηµνη

ρσ ∂σ lnλ
) dxµ

ds

dxν

ds
= 0.
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This equation describes how test particles move in NUVO space under the influence of scalar

modulation, independent of any external force. In the absence of scalar gradients (i.e., when

λ is constant), this reduces to the geodesic equation of the flat background metric ηµν .

These scalar-weighted geodesics define the natural paths of motion and allow for a re-

interpretation of gravitational effects as consequences of conformal modulation rather than

curvature in the Riemannian sense. This approach replaces the Levi-Civita connection with

a scalar-induced connection defined entirely by gradients of λ(x).

V. SINERTIA FLOW AS THE ORIGIN OF GRAVITATIONAL

ACCELERATION

We now introduce sinertia as the scalar-modulated flow of inertial energy and demon-

strate how it serves as the underlying mechanism of gravitational acceleration in NUVO

space.

Let λ(x) be the scalar modulation field on the manifold M, and let ρ(x) denote the rest

mass density of matter in a given frame. We define the scalar-inertial current, or sinertia

flow, as

Jµ(x) = λ(x) ρ(x)uµ(x), (1)

where uµ is the four-velocity of the matter distribution in a local frame. This current

represents the frame-relative flow of sinertia through scalar-modulated space.

The divergence of this current plays a central role in gravitational dynamics. Specifi-

cally, we postulate that the gravitational field is not sourced by mass directly, but by the

compression or divergence of sinertia:

∇µJ
µ = source of scalar curvature. (2)

In the weak-field, static limit, the scalar field equation reduces to a Gauss-like form:

∇2 lnλ(x) =
4πG

c3
∇ · Φ⃗s, (3)

where Φ⃗s = λρv⃗ is the 3D sinertia flux vector in a local spatial slice, and lnλ serves as a scalar

analogue to the gravitational potential. This formulation implies that scalar coherence and

gravitational acceleration arise not from geometric curvature per se, but from the inward

convergence of scalar-modulated inertial flow.
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As a result, the local gravitational acceleration experienced by a test mass is given by

g⃗(x) = −∇ lnλ(x), (4)

emerging directly from the scalar geometry shaped by sinertia flow, rather than being im-

posed externally.

A. Definition of Sinertia

We define the scalar-inertial energy density—or sinertia density—as the product

ρs(x) = λ(x) ρ(x), (5)

which measures the effective inertial energy in the coordinate frame. The flow of this quantity

across a hypersurface Σ is given by

Φ =

∫
Σ

Jµ nµ dΣ, (6)

where nµ is the surface normal. This quantity, when evaluated on spherical shells around a

mass source, defines the radial sinertia flux density, whose divergence determines the scalar

field evolution.

B. Physical Interpretation

Gravitational acceleration is thus reinterpreted as a passive kinematic response to inward

scalar flow. The deeper a particle resides within the scalar gradient, the greater its relative

contraction, and the stronger the acceleration observed from a distant frame.

Regions of high sinertia convergence—such as near a black hole—correspond to diverging

λ and thus strong inward pull. Conversely, in scalar depletion zones, where overlapping flows

balance and ∇ · Φ⃗s ≈ 0, the effective gravity weakens despite the presence of mass. This

framework offers a natural geometric explanation for galactic rotation curves and large-scale

gravitational behavior without invoking dark matter.

This reinterpretation sets the foundation for scalar quantization, as arc closure and co-

herence will be shown to emerge from flow stability conditions rather than potential mini-

mization. These results are developed in the next paper.
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VI. GLOBAL CONSIDERATIONS

While the local structure of NUVO space is governed by the smooth scalar field λ(x)

and the unit-constrained frame bundle1, global properties introduce important subtleties.

In particular, scalar coherence and sinertia are not purely local phenomena; they may be

influenced by topological features, boundary conditions, or singularities in the underlying

manifold.

Scalar Field Smoothness and Integrability

We assume throughout this paper that λ(x) ∈ C∞(M) and is strictly positive on M .

However, in physically realistic settings — such as near astrophysical bodies, cosmological

horizons, or atomic boundaries — the scalar field may exhibit sharp gradients, discontinu-

ities, or even zeros. These singularities may correspond to physical boundaries of scalar

coherence, where the geometry transitions between modulated and unmodulated states.

One possible class of obstructions arises from non-trivial scalar holonomy. If a curve γ

encircles a region where scalar coherence fails (e.g., a topological defect or quantized flux

tube), the total scalar arc length may fail to close, producing a net phase shift in geometric

quantities. This phenomenon is reminiscent of Aharonov–Bohm-type effects in quantum

theory, though here arising from scalar geometry rather than gauge potential.

Bundle Topology and Global Scalar Sections

The scalar field may be interpreted as a section of a real line bundle L+ → M . While

this bundle is trivial locally, global obstructions (such as non-orientability or non-trivial first

cohomology) may preclude the existence of a globally smooth scalar field consistent with the

unit-constrained frame structure. In such cases, patching conditions must be introduced,

and scalar transition functions may carry physical content.

Understanding the topology of L+ and its associated moduli space is therefore essential

for analyzing global scalar coherence, especially in the presence of compact or non-simply-

connected manifolds.
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Coherence Domains and Scalar Boundaries

The scalar field λ(x) also defines a natural partitioning of the manifold into regions of

high and low coherence. In applications to quantum systems and gravitational confinement,

these coherence domains correspond to stable bound states3,4 where scalar arc-lengths close

in integer multiples of a fundamental unit. Boundaries between such domains may exhibit

discontinuities in curvature or in the scalar derivative, potentially signaling phase-like tran-

sitions in the geometric structure of space.

Such scalar boundaries are not merely artifacts of coordinate singularities, but instead

carry geometric and possibly physical significance. In later work, we will examine their role

in black hole interiors, nuclear binding potentials, and cosmological voids.

VII. CONCLUDING REMARKS

In this paper, we have developed the mathematical structure of scalar fields on NUVO

space, a conformally modulated geometric framework in which physical units are constrained

via a scalar field λ(x). Building on a unit-constrained frame bundle1 over a smooth base

manifold, we introduced the concept of scalar arc integrals and derived conformal geodesic

equation2s that govern natural motion in this geometry.

A key innovation introduced here is the definition of scalar flow and the geometric quan-

tity known as sinertia, which captures resistance to acceleration in scalar-modulated space.

Sinertia generalizes the concept of inertial mass and emerges naturally from the transport

of the scalar flow vector jµ = λ2uµ.

We also explored the global structure of scalar fields, including their interpretation as

sections of a real line bundle and the role of topological constraints and coherence domains

in defining scalar behavior on extended manifolds. These structures suggest new geometric

mechanisms for confinement, quantization, and global coherence, which will be explored in

companion papers.

Crucially, the developments presented here are entirely geometric in origin, independent

of any action principle or variational formulation. In contrast, physical applications in the

NUVO theory series, including scalar cosmology, gravitational redshift, and quantum orbital

closure, will utilize Lagrangian formulations built on top of the scalar geometry developed
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here.

This work provides the formal foundation for those applications by rigorously constructing

the differential and bundle-theoretic structure of scalar fields in NUVO space. The resulting

framework offers a unified platform for interpreting gravitational, quantum, and inertial

phenomena as emergent features of scalar-conformal geometry.
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Appendix: Origin of the Sinertia Flux Law

The sinertia field equation used in this work,

∇2 lnλ(x) =
4πG

c3
∇ · Φ⃗s,

is not postulated arbitrarily. It arises naturally from a physical model in which sinertia—scalar-

modulated inertial energy—flows inward through the scalar field at a limiting velocity c into

a region of rest energy depletion.

Consider a spherically symmetric configuration where rest mass has been removed from

the center of a scalar field distribution. To maintain scalar coherence, the inward sinertia

flow must replenish this central deficit. If we assume this inward flux proceeds at speed c,

the total flow through any enclosing spherical surface of radius r is given by:

Φ(r) =
Mc3

4πr3
,

where M is the total rest mass deficit at the origin. Interpreting the radial acceleration as

arising from the gradient of scalar modulation, we obtain:

g(r) = −∇ lnλ(r) =
4πGr

c3
Φ(r),

which in turn leads to the scalar field equation by taking the divergence.

This model implies that the gravitational effect is not a result of curvature per se, but a

consequence of geometry-modulated inertial flow constrained by the finite velocity c. The

scalar field λ(x) thus acts as a medium through which sinertia is redistributed, and gravita-

tional acceleration reflects the local rate of inward scalar compression.
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