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We construct a scalar-unit-constrained geometric framework over flat spacetime, for-

malized as a fiber bundle whose fibers consist of orthonormal frames scaled by a

smooth scalar field. This structure, termed NUVO space, is defined by a conformally

modulated Minkowski metric and a scalar-unit constraint that enforces local unit

coherence between length and time. We develop the internal operations, connection

theory, operator algebra, and functional metrics on the resulting section space, and

prove that the construction embeds standard structures such as Minkowski space

and weak-field general relativity as special or limiting cases. The resulting geom-

etry supports a well-defined calculus over sections, enabling scalar-mediated trans-

port, dynamics, and variational principles. This establishes a rigorous mathematical

foundation for further development of scalar-modulated theories of geometry and

dynamics.
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I. INTRODUCTION

In standard relativistic geometry, spacetime is modeled as a differentiable manifold

equipped with a Lorentzian metric, often locally approximated by Minkowski space. Frame

bundles and orthonormal bases provide the means to define tensor fields, perform transport,

and analyze physical dynamics in both special and general relativity.

This work introduces a new geometric construction—termed NUVO space—in which

local frames are not only orthonormal but also conformally scaled by a smooth scalar field

λ(x), and further constrained by a unit conversion condition between spatial and temporal

measures. The result is a structured bundle over flat spacetime whose fibers encode both

geometry and a local modulation field, enabling scalar-informed transport and dynamics.

The motivation for this construction arises from the observation that certain physical

quantities—particularly those tied to relativistic modulation, time dilation, and quantum

coherence—exhibit behavior suggestive of an underlying scalar structure. By defining a

scalar-compatible connection, operator algebra, and inner product space over sections of

this bundle1,2, we provide a rigorous platform for exploring these ideas.

In this manuscript, we formalize the bundle structure, define internal operations, intro-

duce scalar-compatible transport and functional metrics, and demonstrate how standard ge-

ometric frameworks such as Minkowski space and weak-field general relativity embed within

this scalar-modulated space. The resulting geometry supports generalizations to field the-

ory, curvature, and quantum-inspired scalar structures, establishing a foundation for future

physical and mathematical development.

Although the present work is mathematical in focus, the scalar modulation λ(x) intro-

duced here is not an arbitrary artifact—it corresponds to local geometric scaling that has

natural physical interpretations. In particular, the scalar-unit constraint ϕ = 1 reflects an

invariant relationship between spatial and temporal units observed in relativistic systems.

By formalizing this structure, NUVO space provides a foundation for future applications to

conformally-modulated dynamics, time dilation, redshift, and wave propagation in geomet-

rically evolving backgrounds, to be explored in follow-up work.
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II. BUNDLE FORMALIZATION

A. Base Manifold

Let (M, η) be a smooth, 4-dimensional manifold equipped with the flat Minkowski metric

ηµν of signature (−+++)3,4. We assume no intrinsic curvature. The manifold M serves as

the coordinate domain for physical events.

B. Scalar Field

Let λ : M → R+ be a smooth, positive scalar field. This field defines a conformal scaling

of the background metric5,6:

g(λ)µν (x) := λ2(x)ηµν .

C. Frame Structure

Let TM denote the tangent bundle of M, and let F(M) be the principal bundle of

orthonormal frames over M with structure group SO(1, 3). We define a subbundle F ⊂

F(M) such that each frame {eµ(x)} at x ∈ M satisfies:

g(λ)(eµ, eν) = ηµν .

This condition ensures that the frame is orthonormal with respect to the λ-modulated metric.

D. Total Space Definition

Define the total NUVO space N as:

N :=

{
(x, λ(x), eµ(x)) ∈ M× R+ × TxM

∣∣∣∣ g(λ)µν (x) = λ2(x)ηµν , ϕ(x) =
dℓ

c · dt
= 1

}
.

Each element in N consists of:

• a base point x ∈ M,

• a scalar value λ(x),

• and a local frame eµ(x) satisfying the scalar-unit constraint.
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E. Bundle Projection

We define the projection map:

π : N → M, π(x, λ(x), eµ(x)) = x.

Then:

• The base space is M,

• Each fiber Nx = π−1(x) consists of scalar-constrained frames at x,

• The structure group acts via scalar-preserving frame transformations.

A schematic illustration of the NUVO bundle structure is provided in Figure 1. It shows

the projection of scalar-constrained orthonormal frames over the base manifold M, with

each fiber Nx carrying the scalar modulation λ(x) and satisfying the unit constraint ϕ = 1.

FIG. 1. Fiber Bundle Structure of NUVO Space. This schematic illustrates the geometric

construction of NUVO space as a fiber bundle over a flat base manifold M. Each point xi in the

base is associated with a fiber Nxi consisting of an orthonormal frame eµ modulated by a scalar

field value λ(xi). The scalar-unit constraint ϕ = dℓ/(cdt) = 1 is enforced at every fiber. Projection

lines from each fiber to the base illustrate the bundle structure π : N → M.
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III. CONNECTION FORMS AND TRANSPORT

A. Frame Evolution Over Curves

Let γ : I → M be a smooth, future-directed timelike curve with proper time parameter

τ .

Let s(τ) ∈ Γ(N ) be a smooth section of NUVO space defined along γ(τ). Then s(τ)

represents a smoothly evolving field of scalar-unit-constrained frames:

s(τ) = (γ(τ), λ(γ(τ)), eµ(τ))

with g(λ)(eµ, eν) = ηµν and ϕ = 1.

B. Covariant Derivative ∇N

Define a covariant derivative ∇N
u acting on sections s(τ) along the velocity field uµ = γ̇µ

as:

∇N
u s(τ) :=

Ds

dτ
+ Λ(s),

where:

• Ds
dτ

is the covariant derivative with respect to the Levi-Civita connection of g(λ),

• Λ(s) is a correction term enforcing scalar-unit invariance.

This construction ensures preservation of orthonormality and the scalar-unit condition.

C. Fermi–Walker-Like Transport

Define a transport condition that generalizes Fermi–Walker transport. For vector V µ

along uµ:
DFWV µ

dτ
:=

DV µ

dτ
+ (aµuν − uµaν)Vν ,

where aµ = Duµ

dτ
.

In NUVO space, require:

d

dτ

(
g(λ)(eµ, eν)

)
= 0, and

d

dτ
ϕ = 0

to guarantee preservation of frame structure and scalar unit law.
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D. Connection Form ωN

Define a connection 1-form ωN on the frame bundle F with values in so(1, 3):

ωN : TF → so(1, 3)

constrained by:

• Compatibility with the modulated metric g(λ),

• Preservation of the scalar field structure under transport.

E. Transport Law

The frame transport law along γ(τ) is:

Deµ
dτ

= ωN (u) · eµ

with the condition:
d

dτ

(
λ2ηµν

)
= 0 ⇒ dλ

dτ
= 0 along γ.

That is, transport occurs along scalar-isomodulation curves.

F. Summary

• We define a covariant derivative ∇N adapted to NUVO space,

• Transport preserves orthonormality under the modulated metric and maintains ϕ = 1,

• A connection form ωN governs the frame evolution along curves,

• Transport occurs only along curves with constant scalar modulation λ.

IV. OPERATOR ALGEBRA OVER SECTIONS

A. Section Space Definition

Let

Γ(N ) := {s : M → N | π ◦ s = id, ϕ(s(x)) = 1}
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be the space of smooth sections of NUVO space. Each s(x) is of the form:

s(x) = (x, λ(x), eµ(x))

representing a scalar-constrained orthonormal frame evolving over spacetime.

B. Scalar-Compatible Differential Operators

Define a class of operators Dλ such that:

Dλ[s] = ∇N s+Ψ(s),

where:

• ∇N is the covariant derivative defined earlier,

• Ψ(s) is a deformation operator compatible with λ(x) and the constraint ϕ = 1.

The deformation operator Ψ(s) acts as a local arc-propagator that encodes the scalar

variation along a path segment of arc-length s. Applied to a unit-constrained frame, it

evolves vectors according to the local modulation of space by λ(x). Its geometric role is

analogous to that of a parallel transport operator, but with scalar-weighted scaling integrated

along the trajectory.

The operator output may be:

• another section of Γ(N ),

• a field in Γ(T ∗M⊗N ),

• or a scalar field depending on contraction.

C. Operator Commutators and Algebra

Given two such operators O1,O2, define the commutator:

[O1,O2] := O1 ◦ O2 −O2 ◦ O1.

We define the NUVO operator algebra Aλ
7,8 as the set of operators that:
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• close under commutation,

• preserve the scalar-unit constraint,

• act compatibly with the scalar modulation λ(x).

D. Example Operators

1. (a) Scalar Modulation Gradient

Dλs(x) := eµ(x)∂µλ(x) ∈ Γ(T ∗M).

2. (b) Frame Modulation Divergence

δλ(s) := ∇µeµ(x) ∈ Γ(R).

These illustrate scalar-field-aware differential actions on NUVO sections.

E. Scalar-Constrained Action Functionals

Define action functionals:

S[s] :=
∫
M

L(s,∇N s, λ(x)) volg(λ)

where L is a scalar-valued Lagrangian and volg(λ) is the conformally scaled volume form.

F. Operator Closure: Worked Example

To demonstrate closure under commutators in the NUVO operator algebra Aλ, we con-

sider two scalar-modulated differential operators acting on a scalar field f(x):

O1 := λ(x)∇N
µ , O2 := ∇N

µ λ(x)

We compute the commutator [O1,O2] acting on f :

[O1,O2]f := O1(O2f)−O2(O1f)
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First term:

O1(O2f) = λ(x)∇N
µ

(
(∇N

µ λ(x))f + λ(x)∇N
µ f
)

Second term:

O2(O1f) = (∇N
µ λ(x))∇N

µ f + λ(x)∇N
µ ∇N

µ f

Subtracting yields:

[O1,O2]f = λ(x)∇N
µ (∇N

µ λ(x))f

The result is again a scalar-multiplied differential operator acting on f , and hence an ele-

ment of Aλ. This confirms closure under composition and commutation of scalar-modulated

operators.

G. Summary

• NUVO space supports a class of scalar-compatible differential operators,

• These form a closed algebra under commutators,

• They support variational formulations and field dynamics,

• All operators preserve scalar-unit constraints and conformal geometry.

V. TOPOLOGY AND CONTINUITY

A. Smooth Structure on N

Let M be a smooth 4-dimensional manifold, λ : M → R+ a smooth scalar field, and

F ⊂ F(M) the subbundle of orthonormal frames with respect to g(λ).

Define NUVO space as:

N := {(x, λ(x), eµ) ∈ M× R+ × TxM | g(λ)(eµ, eν) = ηµν , ϕ = 1}

We endow N with the subspace topology induced from the smooth structure of M ×

R+ ×F(M) restricted to scalar-unit-constrained orthonormal frames.
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B. Local Triviality

The projection

π : N → M, π(x, λ(x), eµ) = x

is a smooth submersion. Each fiber Nx := π−1(x) is diffeomorphic to a submanifold of

SO(1, 3).

There exists a local trivialization

N|U ∼= U × F, F ⊂ SO(1, 3)

on each open set U ⊂ M, making N a fiber bundle with a smooth structure group action.

C. Smoothness of the Scalar Field

The scalar field λ : M → R+ is smooth. Consequently:

• The conformal metric g(λ) = λ2η is smooth,

• The constraint ϕ = 1 is smoothly enforced,

• All compatible operations and contractions are smooth on Γ(N ).

D. Operator Continuity

Operators O ∈ Aλ are:

• Continuous in the smooth section topology of Γ(N ),

• Differentiable with respect to both λ(x) and eµ(x),

• Compatible with variational formulations:

δS[s] = 0 defines equations of motion over Γ(N ).

E. Scalar-Respecting Topology

Open sets in N are restricted to frames satisfying:

g(λ)(e0, e0) = −1, and
dℓ

cdt
= 1.

Thus, continuity preserves the scalar-unit constraint and the modulated norm.
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F. Summary

• NUVO space is a smooth fiber bundle over M,

• All geometric structures are continuous and differentiable,

• Scalar modulation λ(x) is smooth and respects global geometry,

• Operator algebra is continuous and supports functional analysis.

VI. FUNCTIONAL METRICS AND NORMS

A. Induced Metric on Sections

Let s(x), t(x) ∈ Γ(N ) be smooth sections:

s(x) = (x, λ(x), eµ(x)), t(x) = (x, λ(x), fµ(x)).

Define the pointwise inner product:

⟨s(x), t(x)⟩x :=
∑
µ,ν

ηµν g(λ)(eµ(x), fν(x)) = λ2(x)
∑
µ

ηµµδµν .

B. Global Inner Product

Define a global L2-type inner product:

⟨s, t⟩ :=
∫
M
⟨s(x), t(x)⟩x volg(λ) .

This equips Γ(N ) with a Hilbert-space-like structure.

C. Scalar-Unit Norm

Define the norm:

∥s∥ :=
√

⟨s, s⟩ =

(∫
M

λ2(x)
∑
µ

ηµµ volg(λ)

)1/2

.

This norm is invariant under Lorentz transformations preserving ϕ = 1.
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D. Dual Sections and Pairing

Given s(x) = (x, λ(x), eµ(x)), define the dual section s∗ ∈ Γ(N ∗) by:

s∗(x)(v) := g(λ)(eµ(x), v
µ).

This defines a fiberwise dual pairing between Γ(N ) and Γ(N ∗).

E. Functional Derivatives

For a functional F : Γ(N ) → R, the Fréchet derivative δF [s] is the unique dual section

such that:

δF [s](δs) =
d

dϵ
F [s+ ϵδs]

∣∣∣∣
ϵ=0

.

This enables variational principles:

δS[s] = 0 ⇒ Euler–Lagrange equations in Γ(N ).

F. Summary

• A functional inner product structure is defined using g(λ),

• Norms, duals, and derivatives are scalar-compatible,

• Variational calculus and field dynamics are supported in NUVO space.

VII. EMBEDDING STANDARD STRUCTURE

A. Minkowski Space as Flat NUVO Space

Let λ(x) ≡ 1 identically on M. Then:

g(λ)µν (x) = λ2(x)ηµν = ηµν

and the scalar field becomes trivial:

ϕ =
dℓ

cdt
= 1.

In this case:
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• N reduces to the orthonormal frame bundle over Minkowski space,

• Transport equations reduce to standard Fermi–Walker or parallel transport,

• Operator structure and norms coincide with standard Minkowski geometry.

Conclusion: Minkowski space is a special case of NUVO space with trivial scalar mod-

ulation.

B. Weak-Field GR as First-Order Scalar Modulation

Suppose λ(x) = 1 + ϵ(x) with |ϵ(x)| ≪ 1. Then:

g(λ)µν (x) = (1 + ϵ(x))2ηµν ≈ (1 + 2ϵ(x))ηµν ,

⇒ g(λ)µν = ηµν + hµν , hµν := 2ϵ(x)ηµν .

This reproduces the linearized metric perturbation hµν of weak-field general relativity,

where the scalar conformal factor governs geometric deformation consistent with known

approximations6,9,10.

• Gravity appears as scalar conformal modulation of the flat metric,

• Einstein equivalence principle holds locally via modulated frames.

Conclusion: Weak-field GR is naturally embedded6 in NUVO via first-order scalar

modulation.

C. Coordinate-Independent Tensor Calculus

NUVO is built over (M, g(λ)) with:

• Smooth charts and frame bundles,

• Tensor fields and duals defined on N ,

• Operator algebra Aλ acting geometrically.

Conclusion: All tensorial structures are coordinate-independent, and scalar-modulated

geometry supports field dynamics in full generality.
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D. Summary of Embeddings

Structure Embedded As...

Minkowski space (SR) λ ≡ 1, trivial scalar field

Weak-field GR λ(x) = 1 + ϵ(x), with |ϵ| ≪ 1

Tensor calculus (GR) (M, g(λ)) with modulated operators

Unit-preserving frames Locally adapted orthonormal sections of N

This confirms that NUVO space extends classical and relativistic frameworks while em-

bedding them as recoverable subcases.

VIII. CLOSURE, SUMMARY, AND FUTURE EXTENSIONS

A. Closure of the Structure

We have constructed a scalar-unit-constrained geometric space N → M satisfying:

• A fibered structure with orthonormal frames scaled by a smooth scalar field λ(x),

• A scalar-unit constraint ϕ = dℓ/(cdt) = 1 embedded at the level of each section,

• A smooth bundle topology supporting transport, algebra, and functional operations.

NUVO space admits:

• A connection ∇N preserving orthonormality and scalar-unit coherence,

• A space of sections Γ(N ) with operator algebra Aλ,

• Functional inner products, dual structures, and variational dynamics.

B. Summary of NUVO Space Properties

N =
{
(x, λ(x), eµ) ∈ M× R+ × TxM

∣∣ g(λ)(eµ, eν) = ηµν , ϕ = 1
}

Key features:

• Scalar modulation: λ(x) modulates local metric geometry conformally.
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• Frame structure: orthonormal bases constrained by scalar-invariant condition.

• Transport: governed by scalar-compatible connection ωN .

• Operator algebra: differential and functional operators form a closed algebra.

• Topology: smooth fiber bundle structure over M.

• Embeddings: recovers SR, weak-field GR, and coordinate-invariant dynamics.

It is important to note that NUVO space, as constructed, is not itself a vector space in the

algebraic sense. The fibers of the NUVO bundle N → M consist of orthonormal frames

modulated by a scalar field λ(x) and constrained by the scalar-unit condition ϕ = 1. These

constraints prevent closure under general linear combinations, which disqualifies the fibers

from satisfying the axioms of a vector space.

However, NUVO space is a richer and more abstract structure: a geometric scaffold

that supports the construction of scalar-modulated vector spaces over it. In particular, the

space of admissible scalar fields, functionals, or field sections defined over N—and especially

those constrained by λ(x) and ϕ = 1—can be endowed with vector space structure, func-

tional norms, and operator algebras. This enables the formulation of field dynamics, wave

equations, and scalar transport laws within a well-defined analytic framework. Thus, while

NUVO space itself is not a vector space, it is fully capable of supporting scalar vector spaces

constructed over its geometry.

C. Future Directions

• Scalar Field Dynamics: Formulate Lagrangians involving λ(x) and curvature to

derive scalar field equations.

• Frame-Scalar Coupled Fields: Extend operator algebra to coupled matter-scalar

systems.

• Quantum Geometry: Define path integrals or Hilbert space structures over Γ(N ).

• Covariant Unification: Generalize ϕ ̸= 1 to encode geometric potential, energy, or

mass terms.

15



D. Conclusion

This derivation defines NUVO space as a rigorous scalar-modulated extension of flat

spacetime. It preserves local geometric structure while introducing a globally coherent scalar

constraint. This geometry enables new field-theoretic formulations that bridge classical,

gravitational, and quantum frameworks under a scalar-invariant structure.

a. Physical Motivation. While the primary objective of this paper is to develop the

mathematical foundations of NUVO space, the scalar conformal factor λ(x) bears immediate

physical relevance. In particular, variations in λ(x) can account for well-known relativistic

phenomena such as gravitational redshift, time dilation, and spatial length contraction. The

scalar-unit constraint ϕ = 1 may be interpreted as a local coherence condition, ensuring that

the frame vectors remain norm-preserving under conformal transformation. These geometric

structures are not merely formal; they will be shown in subsequent work to reproduce

physical effects traditionally derived from curved spacetime or quantum field structure.
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Appendix A: Comparison with Related Geometries

NUVO space shares structural similarities with several known frameworks but departs

from them in key ways:

• Weyl Geometry: While Weyl geometry permits a path-dependent scale factor via

a gauge connection, NUVO space employs a globally smooth scalar field λ(x) deter-

mined by arc-coherence and local frame constraints. No additional gauge freedom is

introduced.

• Scalar-Tensor Theories: NUVO geometry does not couple a scalar field to a stress-

energy tensor. Instead, the scalar field arises from purely geometric integrability con-

ditions, rather than as an added dynamical field.

• Conformal Gravity: Conformal gravity typically involves higher-order curvature

terms and fourth-order equations of motion. In contrast, NUVO maintains second-

order geodesic equations with a conformally modulated base metric.
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Appendix B: Example: Scalar Time Dilation in a Radial Field

As a demonstration of the scalar-conformal framework, consider a toy scalar field defined

by

λ(r) =

√
1 +

r2

R2
,

where R is a characteristic scalar curvature scale. This form resembles a central potential

centered at r = 0.

The proper time interval between two coordinate events at r = 0 and r = R under this

scalar field becomes:

∆τ =

∫ R

0

λ(r) dr = R sinh−1(1) = R log
(
1 +

√
2
)
,

whereas the corresponding coordinate time would be ∆t = R. This illustrates how scalar

modulation alters observed clock rates even in the absence of an explicit curvature tensor.

A more detailed analysis of geodesic deviation and observable redshift will be presented in

future applications.

18



REFERENCES

1M. Nakahara, Geometry, Topology and Physics, 2nd ed. (Taylor & Francis, 2003).

2E. Gourgoulhon, Special Relativity in General Frames: From Particles to Astrophysics

(Springer, 2013).

3S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1 (Wiley-

Interscience, 1963).

4J. C. Baez and J. P. Muniain, Gauge Fields, Knots and Gravity (World Scientific, 1994).

5D. Bleeker, Gauge Theory and Variational Principles (Dover Publications, 1981).

6R. M. Wald, General Relativity (University of Chicago Press, 1984).

7M. Reed and B. Simon, Methods of Modern Mathematical Physics: Functional Analysis,

2nd ed. (Academic Press, 1980).

8S. Lang, Real and Functional Analysis, 3rd ed. (Springer, 1983).

9R. Penrose, Techniques of Differential Topology in Relativity (Society for Industrial and

Applied Mathematics, 1972).

10C. Cherubini, D. Bini, S. Capozziello, and R. Ruffini, “Second order scalar invariants

of the riemann tensor: Applications to black hole spacetimes,” International Journal of

Modern Physics D 11, 827–841 (2002).

19


